Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Stoichiometric ZrGeTe₄

Chang-Ho Lee,^a Gyung-Joo Jang^b and Hoseop Yun^{b*}

^aGyeonggi Science High School, Suwon 440-210, Republic of Korea, and ^bDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea

Correspondence e-mail: hsyun@ajou.ac.kr

Received 23 August 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (Zr–Ge) = 0.002 Å; R factor = 0.036; wR factor = 0.080; data-to-parameter ratio = 23.8.

Zirconium germanium tetratelluride, ZrGeTe₄, is isostructural with Hf_{0.85}GeTe₄ [Mar & Ibers (1993). J. Am Chem. Soc. 115, 3227–3238], but the Zr site in ZrGeTe₄ is fully occupied and the compound is stoichiometric. ZrGeTe₄ adopts a layered structural type. Each layer is composed of two unique onedimensional chains of face-sharing Zr-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra.

Related literature

The synthesis and characterization of Hf_{0.85}GeTe₄ have been published (Mar & Ibers, 1993). The Zr analogue of this phase has also been found but detailed structural studies on ZrGeTe4 have not been reported yet. The title compound, $ZrGeTe_4$, is isostructural with Hf_{0.85}GeTe₄. However, the Zr site in $ZrGeTe_4$ is fully occupied.

For related literature, see: Furuseth et al. (1973).

Experimental

Crystal data

ZrGeTe₄ $M_r = 674.24$ Orthorhombic, Cmc2₁ a = 3.9794 (2) Å b = 15.9296 (10) Å c = 10.9957 (6) Å

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: numerical (NUMABS; Higashi, 2000) $T_{\min} = 0.482, \ T_{\max} = 0.625$

 $V = 697.02 (7) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 22.09 \text{ mm}^-$ T = 150 (1) K $0.50\,\times\,0.03\,\times\,0.02$ mm

3351 measured reflections 904 independent reflections 899 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.081$

Refinement

$P[F^2 > 2\pi(F^2)] = 0.026$	$A_{0} = -1.40 \circ Å^{-3}$
K[T > 20(T)] = 0.050	$\Delta \rho_{\rm max} = 1.40 \ {\rm e \ A}_{\circ}$
$wR(F^2) = 0.080$	$\Delta \rho_{\rm min} = -2.31 \text{ e A}^{-3}$
S = 1.07	Absolute structure: Flack (1983),
904 reflections	420 Friedel pairs
38 parameters	Flack parameter: -0.01 (3)
1 restraint	

Table 1	
Selected geometric parameters	(Å, °).

Zr-Ge	2.8413 (17)	Zr-Te2 ⁱ	2.9806 (11)
Zr-Te1	2.9612 (11)	Zr-Te4	3.0507 (15)
Zr-Te1 ⁱ	2.9612 (11)	Ge-Te4 ⁱⁱ	2.6716 (10)
Zr-Te3 ⁱ	2.9637 (11)	Ge-Te4 ⁱⁱⁱ	2.6716 (10)
Zr-Te3	2.9637 (11)	Ge-Te3 ⁱⁱⁱ	2.6903 (16)
Zr-Te2	2.9806 (11)	Te1-Te2	2.7361 (12)
Te4 ⁱⁱ -Ge-Te4 ⁱⁱⁱ	96.28 (5)	Te4 ⁱⁱⁱ -Ge-Zr	123.34 (4)
Te4 ⁱⁱⁱ -Ge-Te3 ⁱⁱⁱ	93.17 (5)	Te3 ⁱⁱⁱ -Ge-Zr	119.81 (6)
Symmetry codes: (i) x -	$-1, y, z;$ (ii) $-x - \frac{1}{2},$	$-y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$	$-v + \frac{1}{2}, z + \frac{1}{2}$

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

This research was supported by the Korean Research Foundation (KRF-2006-521-C00088). Use was made of the X-ray facilities supported by Ajou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2044).

References

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Furuseth, S., Brattås, L. & Kjekshus, A. (1973). Acta Chem. Scand. 27, 2367-2374
- Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Mar, A. & Ibers, J. (1993). J. Am. Chem. Soc. 115, 3227-3238.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, i183 [doi:10.1107/S1600536807045862]

Stoichiometric ZrGeTe₄

C.-H. Lee, G.-J. Jang and H. Yun

Comment

The title compound is isostructural with $Hf_{0.85}GeTe_4$ (Mar & Ibers, 1993). A view of the structure down the *a* axis in Fig. 1 shows the layered nature of the compound. Fig 2. shows that an individual layer is composed of two unique one-dimensional chains of face-sharing Zr-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra.

The Zr atom is surrounded by six Te atoms in a trigonal prismatic manner, the vertices of two base sides of the prism are composed of six Te atoms. Atoms Te1, Te2, and Te3 form a triangle that is isosceles, the Te1—Te2 distance (2.736 (1) Å) being much shorter than the other two (> 3.0 Å). This short Te1—Te2 separation is typical of $(\text{Te}-\text{Te})^{2^-}$ pair (Furuseth *et al.*, 1973). Te4 and Ge cap two of the rectangular faces of the trigonal prism to complete the Zr-centered bicapped trigonal prismatic coordination. These trigonal prisms share their triangular faces to form an infinite chain, $_{\infty}^{-1}$ [ZrGeTe4] along the direction of the *a* axis.

The Ge atom is surrounded by three Te and one Zr atoms in a distorted tetrahedral fashion. These tetrahedra share their corners through the Te4 atom to form an infinite chain. The bicapped trigonal prismatic and the tetrahedral chains are fused through Zr—Ge bonds to form a double chain and finally these chains are connected along the c axis to complete the two-dimensional layer. These layers then stack on top of each other to form the three-dimensional structure with an undulating van der Waals gap shown in Fig. 1.

We have checked many crystals from different reactions with various starting Zr/Te and Hf/Te ratios. We were not able to find nonstoichiometric $M_{0.85}$ GeTe₄ (*M*=Zr, Hf) phases and we believe that the nature of the nonstoichiometry varies depending on the synthetic method.

Experimental

ZrGeTe₄ was obtained from a reaction of Zr(CERAC, 99.7%), Ge(CERAC, 99.999%) and Te(CERAC, 99.95%) in an elemental ratio of 1:1:4 in the presence of KCl as flux. The mass ratio of reactants and flux was 1:2. The starting materials were placed in a fused-silica tube. The tube was evacuated to 10^{-3} torr, sealed, and heated to 973 K at a rate of 15 K/hr, where it was kept for 72 hrs. The tube was cooled at a rate of 8 K/hr to 373 K and the furnace was shut off. Air- and water-stable metallic shiny needle-shaped crystals were isolated after the flux was removed with water. Qualitative analysis of the crystals with a WDX-equipped scanning electron microscope indicated the presence of Zr, Ge, and Te. No other element was detected.

Refinement

Although the anisotropic displacement parameters (ADPs) of the Zr atom were comparable to those of the other atoms, the nonstoichiometry of Zr in ZrGeTe₄ was checked by refining the occupancy and ADPs of Zr while those of the other atoms

were fixed. With the nonstoichiometric model, both parameter were not changed significantly and the residuals (wR2, R1 indices) were remained the same. The highest peak/deepest hole in the Fourier map are found 1.74Å from Te2 and 0.73Å from Te3.

Figures

Crystal data

Fig. 1. View of $ZrGeTe_4$ down the *a* axis, showing the layered nature of the compound. Filled, grey, and open circles represent Zr, Ge, and Te atoms, respectively. Displacement ellipsoids are drawn at the 90% probability level.

Fig. 2. View of ZrGeTe₄ down the *b* axis, showing a two-dimensional layer. Atoms are as marked in Fig. 1. [Symmetry code: (i) -1 + x, *y*, *z*; (ii) -1/2 - x, 1/2 - y, 1/2 + z; (iii) 1/2 - x, 1/2 - y, 1/2 + z.]

Zirconium germanium tetratelluride

Crystat data	
Zr ₁ Ge ₁ Te ₄	$F_{000} = 1120$
$M_r = 674.24$	$D_{\rm x} = 6.425 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $Cmc2_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: C 2c -2	Cell parameters from 3442 reflections
a = 3.9794 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
<i>b</i> = 15.9296 (10) Å	$\mu = 22.09 \text{ mm}^{-1}$
c = 10.9957 (6) Å	T = 150 (1) K
$V = 697.02 (7) \text{ Å}^3$	Needle, metallic silver
<i>Z</i> = 4	$0.50\times0.03\times0.02~mm$
Data collection	
Rigaku R-AXIS RAPID	899 reflections with $I > 2\sigma(I)$

diffractometer		- ()
T = 150(1) K	$R_{\rm int} = 0.081$	
ω scans	$\theta_{\rm max} = 27.5^{\circ}$	
Absorption correction: numerical (NUMABS; Higashi, 2000)	$\theta_{\min} = 3.2^{\circ}$	
$T_{\min} = 0.482, \ T_{\max} = 0.625$	$h = -5 \rightarrow 4$	
3351 measured reflections	$k = -20 \rightarrow 20$	
904 independent reflections	$l = -13 \rightarrow 14$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 0.122P]$ where $P = (F_o^2 + 2F_c^2)/3$
Least-squares matrix: full	$(\Delta/\sigma)_{max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{max} = 1.40 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.080$	$\Delta \rho_{\rm min} = -2.31 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.07	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
904 reflections	Extinction coefficient: 0.0134 (6)
38 parameters	Absolute structure: Flack (1983), 420 Friedel pairs
1 restraint	Flack parameter: -0.01 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zr	0.0000	0.34835 (8)	0.77333 (11)	0.0065 (3)
Ge	0.0000	0.22779 (8)	0.96377 (13)	0.0077 (3)
Te1	0.5000	0.48455 (5)	0.74420 (8)	0.0083 (2)
Te2	0.5000	0.39999 (5)	0.96079 (7)	0.0084 (2)
Te3	0.5000	0.22096 (6)	0.69689 (7)	0.0070 (2)
Te4	0.0000	0.38129 (5)	0.50002 (7)	0.0073 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zr	0.0068 (5)	0.0086 (6)	0.0042 (5)	0.000	0.000	0.0001 (5)
Ge	0.0079 (5)	0.0108 (7)	0.0044 (5)	0.000	0.000	0.0008 (5)
Te1	0.0089 (3)	0.0097 (5)	0.0065 (4)	0.000	0.000	0.0001 (3)
Te2	0.0087 (3)	0.0117 (5)	0.0048 (4)	0.000	0.000	-0.0012 (3)
Te3	0.0082 (3)	0.0087 (4)	0.0042 (4)	0.000	0.000	-0.0010 (3)
Te4	0.0071 (3)	0.0094 (4)	0.0053 (4)	0.000	0.000	0.0006 (3)

Geometric parameters (Å, °)

Zr—Ge	2.8413 (17)	Ge—Te4 ⁱⁱⁱ	2.6716 (10)
Zr—Te1	2.9612 (11)	Ge—Te3 ⁱⁱⁱ	2.6903 (16)
Zr—Te1 ⁱ	2.9612 (11)	Te1—Te2	2.7361 (12)
Zr—Te3 ⁱ	2.9637 (11)	Te1—Zr ^{iv}	2.9612 (11)
Zr—Te3	2.9637 (11)	Te2—Zr ^{iv}	2.9806 (11)
Zr—Te2	2.9806 (11)	Te3—Ge ^v	2.6903 (16)
Zr—Te2 ⁱ	2.9806 (11)	Te3—Zr ^{iv}	2.9637 (11)
Zr—Te4	3.0507 (15)	Te4—Ge ^{vi}	2.6716 (10)
Ge—Te4 ⁱⁱ	2.6716 (10)	Te4—Ge ^v	2.6716 (10)
Ge—Zr—Te1	125.10 (4)	Tel ⁱ —Zr—Te4	76.55 (4)

supplementary materials

Te1- Zr -Te1 ⁱ 84.43 (4)Te3- Zr -Te480.70 (3)Ge- Zr -Te3 ⁱ 75.30 (4)Te2- Zr -Te4129.33 (3)Te1- Zr -Te3 ⁱ 157.24 (5)Te2 ⁱ - Zr -Te4129.33 (3)Te1 i - Zr -Te3 ⁱ 91.14 (2)Te4 ⁱⁱ -Ge-Te4 ⁱⁱⁱ 96.28 (5)Ge- Zr -Te375.30 (4)Te4 ⁱⁱ -Ge-Te3 ⁱⁱⁱ 93.17 (5)Te1- Zr -Te391.14 (2)Te4 ⁱⁱ -Ge-Te3 ⁱⁱⁱ 93.17 (5)Te1 i - Zr -Te391.14 (2)Te4 ⁱⁱ -Ge- Zr 123.34 (4)Te3 i - Zr -Te3157.24 (5)Te4 ⁱⁱ -Ge- Zr 123.34 (4)Ge- Zr -Te384.34 (4)Te4 ⁱⁱⁱ -Ge- Zr 123.34 (4)Ge- Zr -Te271.15 (3)Te3 ⁱⁱⁱ -Ge- Zr 19.81 (6)Te1 i - Zr -Te254.84 (3)Te2 $-Te1-Zr$ 62.94 (3)Te1 i - Zr -Te2108.73 (5) Zr -Te1 $-Zr^{iv}$ 84.43 (4)Te3 $-Zr$ -Te2115 (3)Te1 $-Te2-Zr^{iv}$ 62.22 (3)Ge- Zr -Te2 ⁱ 71.15 (3)Te1 $-Te2-Zr^{iv}$ 62.22 (3)Ge- Zr -Te2 ⁱ 108.73 (5) Zr -Te1 $-Zr^{iv}$ 82.22 (3)Ge- Zr -Te2 ⁱ 108.73 (5) Zr -Te2 $-Zr^{iv}$ 83.76 (4)Te1 $-Zr$ -Te2 ⁱ 54.84 (3)Ge ^v -Te3 $-Zr^{iv}$ 93.58 (4)Te3 $-Zr$ -Te2 ⁱ 86.38 (2)Ge ^v -Te3 $-Zr^{iv}$ 93.58 (4)Te3 $-Zr$ -Te2 ⁱ 86.38 (2)Ge ^v -Te3 $-Zr^{iv}$ 93.58 (4)Te3 $-Zr$ -Te2 ⁱ 83.76 (4)Ge ^v -Te4 $-Ge^v$ 96.28 (5)Ge $-Zr$ -Te2 ⁱ 83.76 (4)Ge ^v -Te4 $-Ge^v$ 96.28 (5)Ge $-Zr$ -Te2 ⁱ 83.76 (4)Ge ^v -T	Ge—Zr—Te1 ⁱ	125.10 (4)	Te3 ⁱ —Zr—Te4	80.70 (3)
$Ge=Zr=Te3^i$ 75.30 (4) $Te2=Zr=Te4$ 129.33 (3) $Te1=Zr=Te3^i$ 157.24 (5) $Te2^i=Zr=Te4$ 129.33 (3) $Te1^i=Zr=Te3^i$ 91.14 (2) $Te4^{ii}=Ge=Te4^{iii}$ 96.28 (5) $Ge=Zr=Te3$ 75.30 (4) $Te4^{ii}=Ge=Te3^{iii}$ 93.17 (5) $Te1=Zr=Te3$ 91.14 (2) $Te4^{ii}=Ge=Te3^{iii}$ 93.17 (5) $Te1^i=Zr=Te3$ 91.14 (2) $Te4^{ii}=Ge=Te3^{iii}$ 93.17 (5) $Te1^i=Zr=Te3$ 157.24 (5) $Te4^{ii}=Ge=Zr$ 123.34 (4) $Te3^i=Zr=Te3$ 84.34 (4) $Te4^{iii}=Ge=Zr$ 123.34 (4) $Ge=Zr=Te2$ 71.15 (3) $Te3^{iii}=Ge=Zr$ 119.81 (6) $Te1=Zr=Te2$ 54.84 (3) $Te2=Te1=Zr$ 62.94 (3) $Te3^i=Zr=Te2$ 108.73 (5) $Te2=Te1=Zr^{iv}$ 62.94 (3) $Te3^i=Zr=Te2$ 108.73 (5) $Zr=Te2=Zr^{iv}$ 62.22 (3) $Ge=Zr=Te2^i$ 71.15 (3) $Te1=Te2=Zr^{iv}$ 62.22 (3) $Ge=Zr=Te2^i$ 108.73 (5) $Zr=Te2=Zr^{iv}$ 83.76 (4) $Te1^i=Zr=Te2^i$ 108.73 (5) $Zr=Te2=Zr^{iv}$ 93.58 (4) $Te3^i=Zr=Te2^i$ 108.73 (5) $Zr=Te3=Zr^{iv}$ 93.58 (4) $Te3^i=Zr=Te2^i$ 146.43 (5) $Zr^{iv}=Te3=Zr$ 93.58 (4) $Te3^i=Zr=Te2^i$ 83.8 (2) $Ge^v=Te3=Zr$ 93.58 (4) $Te3^i=Zr=Te2^i$ 83.76 (4) $Ge^{vi}=Te4=Ge^v$ 95.28 (5) $Ge=Zr=Te4^i$ 147.38 (6) $Ge^{vi}=Te4=Zr$ 92.01 (4) $Te1=Zr=Te4$ 147.38 (6) $Ge^v=Te4=Zr$ 92.01 (4)	Te1—Zr—Te1 ⁱ	84.43 (4)	Te3—Zr—Te4	80.70 (3)
Te1- Zr -Te3 ⁱ 157.24 (5)Te2 ⁱ - Zr -Te4129.33 (3)Te1 ⁱ - Zr -Te3 ⁱ 91.14 (2)Te4 ⁱⁱ - Ge -Te4 ⁱⁱⁱ 96.28 (5)Ge- Zr -Te375.30 (4)Te4 ⁱⁱ - Ge -Te3 ⁱⁱⁱ 93.17 (5)Te1- Zr -Te391.14 (2)Te4 ⁱⁱⁱ - Ge -Te3 ⁱⁱⁱ 93.17 (5)Te1- Zr -Te3157.24 (5)Te4 ⁱⁱⁱ - Ge - Zr 123.34 (4)Te3 ⁱ - Zr -Te384.34 (4)Te4 ⁱⁱⁱ - Ge - Zr 123.34 (4)Ge- Zr -Te271.15 (3)Te3 ⁱⁱⁱ - Ge - Zr 19.81 (6)Te1- Zr -Te2108.73 (5)Te2-Te1- Zr 62.94 (3)Te3 ⁱ⁻ Zr -Te2108.73 (5)Te2-Te1- Zr ^{iv} 84.43 (4)Te3- Zr -Te2126.38 (2)Te1-Te2- Zr ^{iv} 62.22 (3)Ge- Zr -Te2 ⁱ 71.15 (3)Te1-Te2- Zr ^{iv} 62.22 (3)Ge- Zr -Te2 ⁱ 108.73 (5) Zr -Te1- Zr ^{iv} 84.43 (4)Te1- Zr -Te2 ⁱ 108.73 (5) Zr -Te2- Zr ^{iv} 83.76 (4)Te1- Zr -Te2 ⁱ 63.88 (2)Ge ^v -Te3- Zr ^{iv} 93.58 (4)Te1- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr ^{iv} 93.58 (4)Te1- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr ^{iv} 83.76 (4)Te1- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr ^{iv} 93.58 (4)Te3- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr ^{iv} 93.58 (4)Te3- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr 93.58 (4)Te3- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr 93.58 (4)Te3- Zr -Te2 ⁱ 86.38 (2)Ge ^v -Te3- Zr 84.34 (4)Te3- Zr -Te2 ⁱ 86.38 (2) <td>Ge—Zr—Te3ⁱ</td> <td>75.30 (4)</td> <td>Te2—Zr—Te4</td> <td>129.33 (3)</td>	Ge—Zr—Te3 ⁱ	75.30 (4)	Te2—Zr—Te4	129.33 (3)
Tel ⁱ $2r_{c}$ $91.14 (2)$ $r_{c}4^{ii}$ $-Ge$ $r_{c}4^{iii}$ $96.28 (5)$ Ge Zr $75.30 (4)$ $r_{c}4^{ii}$ $-Ge$ $93.17 (5)$ Tel Zr $91.14 (2)$ $r_{c}4^{iii}$ $-Ge$ $93.17 (5)$ Tel Zr $157.24 (5)$ $r_{c}4^{iii}$ $-Ge$ $23.34 (4)$ Tej ⁱ Zr $123.34 (4)$ $r_{c}4^{iii}$ $-Ge$ Zr Tej ⁱ Zr $123.34 (4)$ $r_{c}4^{iii}$ Ge Zr Ge Zr $119.81 (6)$ $r_{c}2/2r (2) (3)$ $r_{c}2/2r (2) (3)$ Tel Zr $71.15 (3)$ $r_{c}2$ $r_{c}1$ Zr Tej ⁱ Zr $146.43 (5)$ Zr Zr $62.22 (3)$ Tel Zr Zr Zr Zr Zr Zr Ge Zr Tej^{i} Zr Zr Zr Tej ⁱ $108.73 (5)$ Zr Te^{2} Zr Zr Tel Zr Zr Zr Zr Zr <	Te1—Zr—Te3 ⁱ	157.24 (5)	Te2 ⁱ —Zr—Te4	129.33 (3)
Ge=Zr=Te375.30 (4)Te4 ⁱⁱ =Ge=Te3 ⁱⁱⁱ 93.17 (5)Te1=Zr=Te391.14 (2)Te4 ⁱⁱⁱ =Ge=Te3 ⁱⁱⁱ 93.17 (5)Te1 ⁱ =Zr=Te3157.24 (5)Te4 ⁱⁱⁱ =Ge=Zr123.34 (4)Te3 ⁱⁱ =Zr=Te384.34 (4)Te4 ⁱⁱⁱ =Ge=Zr123.34 (4)Ge=Zr=Te271.15 (3)Te3 ⁱⁱⁱ =Ge=Zr119.81 (6)Te1=Zr=Te254.84 (3)Te2=Te1=Zr62.94 (3)Te3 ⁱⁱ =Zr=Te2108.73 (5)Te2=Te1=Zr ^{iv} 62.94 (3)Te3 ⁱⁱ =Zr=Te2146.43 (5)Zr=Te1=Zr ^{iv} 84.43 (4)Te3=Zr=Te286.38 (2)Te1=Te2=Zr ^{iv} 62.22 (3)Ge=Zr=Te2 ⁱⁱ 71.15 (3)Te1=Te2=Zr ^{iv} 62.22 (3)Ge=Zr=Te2 ⁱⁱ 108.73 (5)Zr=Te2=Zr ^{iv} 83.76 (4)Te1=Zr=Te2 ⁱⁱ 108.73 (5)Zr=Te3=Zr ^{iv} 93.58 (4)Te1 ⁱ =Zr=Te2 ⁱⁱ 86.38 (2)Ge ^v =Te3=Zr ^{iv} 93.58 (4)Te3 ⁱ =Zr=Te2 ⁱⁱ 146.43 (5)Zr ^{iv} =Te3=Zr93.58 (4)Te3 ⁱ =Zr=Te2 ⁱⁱ 83.76 (4)Ge ^{vi} =Te4=Ge ^v 96.28 (5)Ge=Zr=Te4147.38 (6)Ge ^{vi} =Te4=Zr92.01 (4)	Te1 ⁱ —Zr—Te3 ⁱ	91.14 (2)	Te4 ⁱⁱ —Ge—Te4 ⁱⁱⁱ	96.28 (5)
Tel=Zr=Te391.14 (2)Ted ⁱⁱⁱ =Ge=Te3 ⁱⁱⁱ 93.17 (5)Tel ⁱ =Zr=Te3157.24 (5)Ted ⁱⁱⁱ =Ge=Zr123.34 (4)Te3 ⁱ =Zr=Te384.34 (4)Ted ⁱⁱⁱ =Ge=Zr123.34 (4)Ge=Zr=Te271.15 (3)Te3 ⁱⁱⁱ =Ge=Zr119.81 (6)Tel=Zr=Te254.84 (3)Te2=Te1=Zr62.94 (3)Te1 ⁱⁱ =Zr=Te2108.73 (5)Te2=Te1=Zr ^{iv} 62.94 (3)Te3 ⁱⁱ =Zr=Te2146.43 (5)Zr=Te1=Zr ^{iv} 62.94 (3)Ge=Zr=Te2 ⁱ 71.15 (3)Te1=Te2=Zr ^{iv} 62.22 (3)Ge=Zr=Te2 ⁱ 71.15 (3)Te1=Te2=Zr ^{iv} 62.22 (3)Ge=Zr=Te2 ⁱ 108.73 (5)Zr=Te2=Zr ^{iv} 83.76 (4)Te1 ⁱ =Zr=Te2 ⁱ 54.84 (3)Ge ^v =Te3=Zr ^{iv} 93.58 (4)Te3 ⁱ =Zr=Te2 ⁱ 146.43 (5)Zr ^{iv} =Te3=Zr93.58 (4)Te3 ⁱ =Zr=Te2 ⁱ 84.36 (4)Ge ^{vi} =Te4=Ge ^v 96.28 (5)Ge=Zr=Te2 ⁱ 146.43 (5)Zr ^{iv} =Te3=Zr93.58 (4)Te3=Zr=Te2 ⁱ 146.43 (5)Zr ^{iv} =Te3=Zr93.58 (4)Te3=Zr=Te2 ⁱ 146.43 (5)Zr ^{iv} =Te3=Zr93.58 (4)Te3=Zr=Te2 ⁱ 83.76 (4)Ge ^{vi} =Te4=Ge ^v 96.28 (5)Ge=Zr=Te4147.38 (6)Ge ^{vi} =Te4=Zr92.01 (4)Te1=Zr=Te476.55 (4)Ge ^v =Te4=Zr92.01 (4)	Ge—Zr—Te3	75.30 (4)	Te4 ⁱⁱ —Ge—Te3 ⁱⁱⁱ	93.17 (5)
Teli_Zr_Te3157.24 (5)Ted ⁱⁱ _Ge_Zr123.34 (4)Te3 ⁱⁱ _Zr_Te384.34 (4)Ted ⁱⁱⁱ _Ge_Zr123.34 (4)Ge_Zr_Te271.15 (3)Te3 ⁱⁱⁱ _Ge_Zr119.81 (6)Tel-Zr_Te254.84 (3)Te2_Te1_Zr62.94 (3)Te1 ⁱ _Zr_Te2108.73 (5)Te2_Te1_Zr ^{iv} 62.94 (3)Te3 ⁱⁱ _Zr_Te2146.43 (5)Zr_Te1_Zr ^{iv} 84.43 (4)Te3-Zr_Te286.38 (2)Te1_Te2_Zr62.22 (3)Ge_Zr_Te2 ⁱ 71.15 (3)Te1_Te2_Zr ^{iv} 62.22 (3)Ge_Zr_Te2 ⁱ 108.73 (5)Zr_Te2_Zr ^{iv} 83.76 (4)Te1 ⁱ _Zr_Te2 ⁱ 54.84 (3)Ge ^v _Te3_Zr ^{iv} 93.58 (4)Te3 ⁱ _Zr_Te2 ⁱ 86.38 (2)Ge ^v _Te3_Zr93.58 (4)Te3 ⁱ _Zr_Te2 ⁱ 146.43 (5)Zr ^{iv} _Te3_Zr84.34 (4)Te3_Zr_Te2 ⁱ 83.76 (4)Ge ^{vi} _Te4_Ge ^v 96.28 (5)Ge_Zr_Te4147.38 (6)Ge ^{vi} _Te4_Zr92.01 (4)	Te1—Zr—Te3	91.14 (2)	Te4 ⁱⁱⁱ —Ge—Te3 ⁱⁱⁱ	93.17 (5)
Te3 ⁱ —Zr—Te384.34 (4)Te4 ⁱⁱⁱ —Ge—Zr123.34 (4)Ge—Zr—Te271.15 (3)Te3 ⁱⁱⁱ —Ge—Zr119.81 (6)Te1—Zr—Te254.84 (3)Te2—Te1—Zr62.94 (3)Te1 ⁱ —Zr—Te2108.73 (5)Te2—Te1—Zr ^{iv} 62.94 (3)Te3 ⁱⁱ —Zr—Te2146.43 (5)Zr—Te1—Zr ^{iv} 62.22 (3)Ge—Zr—Te286.38 (2)Te1—Te2—Zr ^{iv} 62.22 (3)Ge—Zr—Te2 ⁱ 71.15 (3)Te1—Te2—Zr ^{iv} 62.22 (3)Te1—Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 108.73 (5)Zr—Te3—Zr ^{iv} 93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 108.73 (5)Zr ^{iv} —Te3—Zr93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 108.73 (5)Zr ^{iv} —Te3—Zr93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te4—Ge ^v 96.28 (5)Ge—Zr—Te2 ⁱ 146.43 (5)Zr ^{iv} —Te4—Ge ^v 96.28 (5)Ge—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Ge ^v 96.28 (5)Ge—Zr—Te4147.38 (6)Ge ^{vi} —Te4—Zr92.01 (4)	Te1 ⁱ —Zr—Te3	157.24 (5)	Te4 ⁱⁱ —Ge—Zr	123.34 (4)
GeZrTe2Ti.15 (3)Te3 ⁱⁱⁱ GeZr119.81 (6)Te1Zr54.84 (3)Te2Te1Zr62.94 (3)Te1ZrTe2108.73 (5)Te2Te1ZrTe3 ⁱ ZrTe2146.43 (5)ZrTe1ZrTe3 ⁱ ZrTe286.38 (2)Te1Te2ZrGeZrTe2 ⁱ 71.15 (3)Te1Te2ZrGeZrTe2 ⁱ 108.73 (5)ZrTe1ZrGeZrTe2 ⁱ 108.73 (5)ZrTe2ZrTe1ZrTe254.84 (3)Ge ^v Te3ZrTe1ZrTe2 ⁱ 54.84 (3)Ge ^v Te3ZrTe1ZrTe2 ⁱ 54.84 (3)Ge ^v Te3ZrTe3 ⁱ ZrTe2ZrS8 (4)S8S8 (2)Ge ^v Te3Te3ZrTe2Te3Zr93.58 (4)S8 (4)Te3ZrTe3ZrS8 (4)S1S1S1Te3ZrTe3ZrS8 (4)S1S1S1S1Te3ZrTe3ZrS2S1S1S1S1Te3ZrTe3ZrS2S1S1S1S1Te3ZrTe3ZrS2S1S1S1S1Te3ZrTe3ZrS1S1S1S1S1Te3ZrTe3	Te3 ⁱ —Zr—Te3	84.34 (4)	Te4 ⁱⁱⁱ —Ge—Zr	123.34 (4)
Te1—Zr—Te254.84 (3)Te2—Te1—Zr62.94 (3)Te1 ⁱ —Zr—Te2108.73 (5)Te2—Te1—Zr ^{iv} 62.94 (3)Te3 ⁱ —Zr—Te2146.43 (5)Zr—Te1—Zr ^{iv} 84.43 (4)Te3—Zr—Te286.38 (2)Te1—Te2—Zr62.22 (3)Ge—Zr—Te2 ⁱ 71.15 (3)Te1—Te2—Zr ^{iv} 62.22 (3)Te1—Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 54.84 (3)Ge ^v —Te3—Zr ^{iv} 93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 146.43 (5)Zr ^{iv} —Te3—Zr84.34 (4)Te3—Zr—Te2 ⁱ 146.43 (5)Zr ^{iv} —Te3—Zr92.01 (4)Te2—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Zr92.01 (4)	Ge—Zr—Te2	71.15 (3)	Te3 ⁱⁱⁱ —Ge—Zr	119.81 (6)
Te1 ⁱ —Zr—Te2108.73 (5)Te2—Te1—Zr ^{iv} 62.94 (3)Te3 ⁱ —Zr—Te2146.43 (5)Zr—Te1—Zr ^{iv} 84.43 (4)Te3—Zr—Te286.38 (2)Te1—Te2—Zr62.22 (3)Ge—Zr—Te2 ⁱ 71.15 (3)Te1—Te2—Zr ^{iv} 62.22 (3)Te1—Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 54.84 (3)Ge ^v —Te3—Zr ^{iv} 93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3—Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Ge ^v 96.28 (5)Ge—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4)Ge ^v —Te4—Zr92.01 (4)	Te1—Zr—Te2	54.84 (3)	Te2—Te1—Zr	62.94 (3)
Te3 ⁱ —Zr—Te2146.43 (5)Zr—Te1—Zr ^{iv} 84.43 (4)Te3—Zr—Te286.38 (2)Te1—Te2—Zr62.22 (3)Ge—Zr—Te2 ⁱ 71.15 (3)Te1—Te2—Zr ^{iv} 62.22 (3)Te1—Zr—Te2 ⁱ 108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2 ⁱ 54.84 (3)Ge ^v —Te3—Zr ^{iv} 93.58 (4)Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3—Zr—Te2 ⁱ 146.43 (5)Zr ^{iv} —Te3—Zr93.58 (4)Te2—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Ge ^v 96.28 (5)Ge—Zr—Te4147.38 (6)Ge ^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4)Ge ^v —Te4—Zr92.01 (4)	Te1 ⁱ —Zr—Te2	108.73 (5)	Te2—Te1—Zr ^{iv}	62.94 (3)
Te3—Zr—Te286.38 (2)Te1—Te2—Zr62.22 (3)Ge—Zr—Te2i71.15 (3)Te1—Te2—Zr ^{iv} 62.22 (3)Te1—Zr—Te2i108.73 (5)Zr—Te2—Zr ^{iv} 83.76 (4)Te1 ⁱ —Zr—Te2i54.84 (3)Ge ^v —Te3—Zr ^{iv} 93.58 (4)Te3 ⁱ —Zr—Te2i86.38 (2)Ge ^v —Te3—Zr93.58 (4)Te3—Zr—Te2 ⁱ 146.43 (5) Zr^{iv} —Te3—Zr84.34 (4)Te2—Zr—Te2 ⁱ 83.76 (4)Ge ^{vi} —Te4—Ge ^v 96.28 (5)Ge—Zr—Te4147.38 (6)Ge ^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4)Ge ^v —Te4—Zr92.01 (4)	Te3 ⁱ —Zr—Te2	146.43 (5)	Zr—Te1—Zr ^{iv}	84.43 (4)
$Ge = Zr = Te2^i$ 71.15 (3) $Te1 = Te2 = Zr^{iv}$ 62.22 (3) $Te1 = Zr = Te2^i$ 108.73 (5) $Zr = Te2 = Zr^{iv}$ 83.76 (4) $Te1^i = Zr = Te2^i$ 54.84 (3) $Ge^v = Te3 = Zr^{iv}$ 93.58 (4) $Te3^i = Zr = Te2^i$ 86.38 (2) $Ge^v = Te3 = Zr$ 93.58 (4) $Te3 = Zr = Te2^i$ 146.43 (5) $Zr^{iv} = Te3 = Zr$ 84.34 (4) $Te2 = Zr = Te2^i$ 83.76 (4) $Ge^{vi} = Te4 = Ge^v$ 96.28 (5) $Ge = Zr = Te4$ 147.38 (6) $Ge^{vi} = Te4 = Zr$ 92.01 (4) $Te1 = Zr = Te4$ 76.55 (4) $Ge^v = Te4 = Zr$ 92.01 (4)	Te3—Zr—Te2	86.38 (2)	Te1—Te2—Zr	62.22 (3)
Te1-Zr-Te2i108.73 (5)Zr-Te2-Zriv83.76 (4)Te1i-Zr-Te2i54.84 (3)Gev-Te3-Zriv93.58 (4)Te3i-Zr-Te2i86.38 (2)Gev-Te3-Zr93.58 (4)Te3-Zr-Te2i146.43 (5) Zr^{iv} -Te3-Zr84.34 (4)Te2-Zr-Te2i83.76 (4)Gevi-Te4-Gev96.28 (5)Ge-Zr-Te4147.38 (6)Gevi-Te4-Zr92.01 (4)Te1-Zr-Te476.55 (4)Gev-Te4-Zr92.01 (4)	Ge—Zr—Te2 ⁱ	71.15 (3)	Te1—Te2—Zr ^{iv}	62.22 (3)
Te1iZrTe2i54.84 (3) Ge^v Te3Zr'v93.58 (4)Te3iZrTe3ZrTe3Zr93.58 (4)Te3ZrTe3Zr93.58 (4)93.58 (4)Te3ZrTe3Zr84.34 (4)Te2ZrTe3Zr84.34 (4)Te2ZrTe4Ge ^{vi} Te4Ge ^{vi} GeZrTe4147.38 (6)Ge ^{vi} Te4Te1ZrTe476.55 (4)Ge ^v Te4Te1Te4Te4Te4Te4Te4	Te1—Zr—Te2 ⁱ	108.73 (5)	Zr—Te2—Zr ^{iv}	83.76 (4)
Te3 ⁱ —Zr—Te2 ⁱ 86.38 (2) Ge^v —Te3—Zr93.58 (4)Te3—Zr—Te2 ⁱ 146.43 (5) Zr^{iv} —Te3—Zr84.34 (4)Te2—Zr—Te2 ⁱ 83.76 (4) Ge^{vi} —Te4— Ge^v 96.28 (5)Ge—Zr—Te4147.38 (6) Ge^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4) Ge^v —Te4—Zr92.01 (4)	Te1 ⁱ —Zr—Te2 ⁱ	54.84 (3)	Ge ^v —Te3—Zr ^{iv}	93.58 (4)
Te3—Zr—Te2i146.43 (5) Zr^{iv} —Te3—Zr84.34 (4)Te2—Zr—Te2i83.76 (4) Ge^{vi} —Te4— Ge^{v} 96.28 (5)Ge—Zr—Te4147.38 (6) Ge^{vi} —Te4— Zr 92.01 (4)Te1—Zr—Te476.55 (4) Ge^v —Te4— Zr 92.01 (4)	Te3 ⁱ —Zr—Te2 ⁱ	86.38 (2)	Ge ^v —Te3—Zr	93.58 (4)
Te2—Zr—Te2i83.76 (4) Ge^{vi} —Te4— Ge^{v} 96.28 (5)Ge=Zr—Te4147.38 (6) Ge^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4) Ge^{v} —Te4—Zr92.01 (4)	Te3—Zr—Te2 ⁱ	146.43 (5)	Zr ^{iv} —Te3—Zr	84.34 (4)
Ge—Zr—Te4147.38 (6) Ge^{vi} —Te4—Zr92.01 (4)Te1—Zr—Te476.55 (4) Ge^v —Te4—Zr92.01 (4)	Te2—Zr—Te2 ⁱ	83.76 (4)	Ge ^{vi} —Te4—Ge ^v	96.28 (5)
Te1—Zr—Te4 76.55 (4) Ge^{v} —Te4—Zr 92.01 (4)	Ge—Zr—Te4	147.38 (6)	Ge ^{vi} —Te4—Zr	92.01 (4)
	Te1—Zr—Te4	76.55 (4)	Ge ^v —Te4—Zr	92.01 (4)

Symmetry codes: (i) x-1, y, z; (ii) -x-1/2, -y+1/2, z+1/2; (iii) -x+1/2, -y+1/2, z+1/2; (iv) x+1, y, z; (v) -x+1/2, -y+1/2, z-1/2; (vi) -x-1/2, -y+1/2, z-1/2; (vi) -x-1/2, -y+1/2, z-1/2.

